Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248608

ABSTRACT

There is a pressing need to characterise the nature, extent and duration of immune response to SARS-CoV-2 in cancer patients and inform risk-reduction strategies and preserve cancer outcomes. CAPTURE is a prospective, longitudinal cohort study of cancer patients and healthcare workers (HCWs) integrating longitudinal immune profiling and clinical annotation. We evaluated 529 blood samples and 1051 oronasopharyngeal swabs from 144 cancer patients and 73 HCWs and correlated with >200 clinical variables. In patients with solid cancers and HCWs, S1-reactive and neutralising antibodies to SARS-CoV-2 were detectable five months post-infection. SARS-CoV-2-specific T-cell responses were detected, and CD4+ T-cell responses correlated with S1 antibody levels. Patients with haematological malignancies had impaired but partially compensated immune responses. Overall, cancer stage, disease status, and therapies did not correlate with immune responses. These findings have implications for understanding individual risks and potential effectiveness of SARS-CoV-2 vaccination in the cancer population.


Subject(s)
Neoplasms , Hematologic Neoplasms
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423682

ABSTRACT

Since the beginning of the global SARS-CoV-2 pandemic, there have been a number of efforts to understand the mutations and clusters of genetic lines of the SARS-CoV-2 virus. Until now, phylogenetic analysis methods have been used for this purpose. Here we show that Principal Component Analysis (PCA), which is widely used in population genetics, can not only help us to understand existing findings about the mutation processes of the virus, but can also provide even deeper insights into these processes while being less sensitive to sequencing gaps. Here we describe a comprehensive analysis of a 46,046 SARS-CoV-2 genome sequence dataset downloaded from the GISAID database in June of this year. SummaryPCA provides deep insights into the analysis of large data sets of SARS-CoV-2 genomes, revealing virus lineages that have thus far been unnoticed.

SELECTION OF CITATIONS
SEARCH DETAIL